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My Bio

Alec Feinberg is the founder of DfRSoft. He has a Ph.D. in Physics and i1s
the principal author of the books, Design for Reliability and
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in reliability and shock and vibration, training classes and DfRSoftware.
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diverse industries (AT&T Bell Labs, Tyco Electronics, HP, NASA, etc) for
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systems. He has provided training classes in Design for Reliability &
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Engineering.”

Alec Feinberg — DfRSoft



Reliability Distributions Fit the Bathtub

Curve

m Most common example 1s Weibull power law
exponent Beta

Failure
Rate
t Infant : ;
.+ Steadv Stat : ;
Mortality eady State Wearout
<1 p=1

Operating Time
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Example: Weibull Beta Fit on Wear Out

 [f we tried to fit the wear out area, what model would
we use? A basic power law expression 1s the Weibull
choice

* When we simplify the complex looking Weibull
failure rate, 1t 1s just a ssmple Power Law form

\ i
10-L0p =1t sl

p

Where /=3, ¢=2, L

A(t)

Time
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Bathtub Curve and Physics of Failure

= [s there a connection between the bathtub curve
and physics of failure aging laws?

= If so, then we can support the conclusion that
parametric aging effects the underlying failure

rate distribution .
Common aging laws

My | P(H)=Ct*

Imfamt i
Mortality Steady State Wearout

pel p=1

P=Alog(1+b 1)

—E,/KpT
R=R e ™"

Operating Time
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Most Popular Aging Laws In The

Literature
u Power Law: P(t) —Ctt

= where P 1s the aging parameter of interest, C and K are
constants, and t 1s time. Example, most accelerated testing
equations (Coffin-Manson, Vibration deg rate, Creep stages,
thin films resistors, capacitor voltage life, etc.

m Log time Aging: P=A log(1+b 1)
o where A, and b are constants, P i1s the parameter of interest and t is time.

Example: Transistor gate drift, crystal frequency drift, primary battery
degradation, primary stage 1 creep...

[ ] [ ] [ ] _E /K T
» Arrhenius Activation: R=R e "

o where R i1s the aging rate of a parameter, R 1s a constant related to a time
constant 1/t,. The rate R goes inversely with time. Used to model most
reliability temperature failure rate occurances...
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Bathtub Statistics Works But What About
the Underlying Physics?

= True statisticians will say whatever fits the data
best, use that distribution...

m However, Let’s ask a deeper question, why do we
see this type of failure rate shape??

» Is there perhaps a reason to select one distribution
compared to another due to the physics?

= What about the underlying aging law?
= Are the distribution parameters related to the aging
law??
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Two Types of Reliability Failure Rates

s Parametric Failure
0 Typically graceful degradation, and often predictable

m Catastrophic Failure:
o Sudden failure

0 Can result from underlying parametric aging law

s Parametric degradation can be associated with
catastrophic failure

o Example 20% drift unacceptable —a failure limit, or 80%
defects create a catastrophic sudden crack & failure
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Log(time) Aging Laws and the
Lognormal Distribution
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Example of Parametric Failure Rate Connection
to Lognormal aging 1n time

m Let’s first illustrate that if parts are normally
distributed and age in log-time, then their failure rate
is lognormall.

age in log-time Lognormal PDF
P=Alog(l+bt) — ( 2)
og(l+h Y 1 1 (Inz—Int,
> f(H)= exp < S
O't\/27r 2 o
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What Does Log(time) Drift Look Like?
m Log(time drift) also looks

. . Log(time drift)
like power law aging for 0<K<] "
K - Y=Ln(1+71)
Y,=22Ln(+.7t) ~ Y=Ct :
=
5 z
nni" i : 4 : H -
E ) ,m*‘"m Time
33 4.*“'“ 0.5 0
32 o Y =15¢ 5 i
g B ,::1"' : % Y=-Ln(I+71)
N ,=22Ln(1+71) £
~ e £
: -
0 2 4 6 8 10 12 {5
Time (arbitrary units) I ! 4 Tim:t § 1o
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Visualization for Normal Distribution

aging to the right

m Here the parameter P(t) passes the parametric
failure threshold over time, if 1s does so due to log

time drift then we would like to show that the
failure rate will be lognormal failure rate in time.

06 1

0 | PDF(t}] ——AgingDrift --> Log(time)

04 1 Parametric
034 Failure
02 + Threshold
"] %7\
0 | | ! + } ! 1
0 05 1 15 2 25 39 4 45
P(t=3)=1.37
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Log time aging simplified

= To that end, the general form of the a log time model
1s (see references)

P:Alna+bt)thK where 0<K<1

= and to simplify, when b>>1 we can write

P=A1Inpr)
= Here P 1s the parameter of interest, such as
creep { P=A&=Strain), beta gain of a transistor’s aging,
or perhaps crystal frequency drift and so forth.
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Inserting Log time aging into normal PDF

= When manufactured parts are normally distributed, a
parameter of interest can be statistically assessed using
Gaussian probability density function (pdt) g(p, ¢)

ex
O\ 2T p2 o

s Here P is the parameter of interest like creep. Now
consider that the parameter 1s aging according to a log-
time equation then by substitution

oIt 1. 0= 1 ox l(hrlt—lmtsoj2
b5 0\/52_ 7 o

Where for purposes of illustration in Equation 4 we have let A=b=1
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Obtaining the Lognormal distribution form

log time aging

= It i1s customary to change variables so that we may formally
obtain the lognormal distribution for the above equation, this
occurs typically when integrating for the CDF 1.e.,

dint . _ g(lnt)%

= Although used in integration for the CDF it 1s valid to now
write the pdf in 1ts desired form

2(Int)dInt = g(In¢)

f(t:t,,0)= : exp _l(lnt—lntsojz
Y o2 2 o

= Here, the function f(2:t;,, s) 1s the lognormal probability
dens1ty function as desired yielding lognormal failure rate
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Lognormal Distribution Model

* Probability Density Function

1

Int—In¢

1
f(t_gt\/% eXpi

2

|

O

. Cumulatlve Distribution Function

F(t) = exXp—

GFJ o

lncx/xso))z

e Failure Rate ﬂ(t) —

* Median =t

 Shape Parameter
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Physical Implications Related to Log-time
Aging

u When a manufactured part has a key parameter that is
distributed normally, and ages in log-time, its failure
rate is generally lognormally distributed. This could also
be the case for power law aging models that are typically
found empirically as well when the power 0<K<I.

n Although we have described this for parametric failure, it can
apply to catastrophic failure. For example, if a transistor is
aging most of its lifetime in log-time then suddenly fails
catastrophically, but it was due to the underling log-time aging
mechanism like gate leakage, then the transistor’s failure
distribution is likely lognormal.
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Example Normally Distributed a-Values

Data Normality Analysis Linear Regression of Data to F(x) CDF

Enter Confidence Assessment
Confidence | Sigma Mean Rho
MNormality Test
QObservation 1.295746374 3.951906378 0.989873518
Normal Regression Probability {COF) Platand Data FIT
(Fit=Grean, Data= Bliue) Lognormal Regression Probability (COF) Plot and Data
Visual Display of How Well Data is Nommally Distributed FIT
130 - ] ) i ) ] ) ] (Fit=Green, Data= Blus)
130 Vil Display of Haw Wall Daks is Lagnarmally
\ Distributed
100 5 100 4
=
gﬂl E E B} -
g 2
o &
A = 1
g :
E
= a0 a*
m -
llﬂ -
1] 1
1] v 1l 1 a
i 1 2 3 4 5 [ 7 E
Diata Values

s Example of normally distributed values.
Note, lognormal poor fit
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Distribution Aged 1in Log(time)

m Select a failure criteria Y=8, values age according
to equation Y=a Ln(t;)

06

051 PDF(t] ———AgingDrift
04 1 Parametric
03 4 Failure
04 c=1.3 Threshold
" %777\
0 : : 1 | & J. ‘
3.95
Pt}  v=8

Fail times Y=8=a Ln(t)
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Fail times for Good Fit

Example (Lognormal Aging Fit) a Y=8

p ( g g g ) 2.04] 50.75 Confidence Lognormal Regression Results /

2.04] 5056 Enger% Sigma | Median Life | Mean Life Rho
2.05| 49.49

229 32.80 80 Shape Param (50% failure) (Average)

2.30] 32.42 RRX 0.760644513 |  9.506802604 | 12.69613534 | 0.947969914
2.38| 28.74
2.41] 27.50 FIG 3 DR Seft: Lognonral Regression Probabdity (C0F) Plotand
2.69| 19.55 Data FIT {Fil=Gresen, Dala= Blue)

2.73] 18.79
2.74| 1851 12 -
2.96| 14.91 . .

298] 14.61 Plot of fail time to Y=8
13| 3.10| 13.21
3.10] 13.21
3.23| 11.92
3.25| 11.72
3.29| 11.37

3.39] 10.60
3.52| 9.72 a0 |
3.60| 9.23

3.61| 9.16
3.66| 8.90
3.67| 886
3.68| 8.80
3.94| 7.63
4.01] 7.35
4.13| 6.92
4.22| 6.66
4.31| 6.39
4.32| 6.38
4.34| 6.32
4.44| 6.05
4.65| 5.59 2 -

fail times are lognormal Znjee: i
dlStrlbuted RhO — 95% 510] 479 ") 0 P 30 @ 5 0

5.30| 4.52
5.37| 4.44 Time

0~ s W N
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Note - Lognormal 1s best fit compared to:
m Weibull Rho 83% Normal Rho 72%

FiG 2 DM Soft: Weibull Regression Probability (CDF) Plot and FIG & Dfft Soft: Normal Regression F'mhihlllh' lI:I:lFiFIutmd
Drata FIT [Fit=Gresn, Data= Blus) Data FIT (Fit=Green, Data= B
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Thermally Activated Time-dependent (TAT)

s Origin of log time aging model can be thermally activated processes.
The author has published numerous publications on this and these are
cited (see References below) often used for transistor aging assessment

a:A—P;A In[1+B¢]

A = KBT}C)an B = V(T)yl ;: Y=Ln(1+71)
M KT Z
» Origin of TAT model — Thermally E

8 10

Activated Processes, y1 above related to S

Free energy ¢ dp &

= =y exp| - ——
di P\T &, T

Reference: Ch. 6 & 7 of my PoF book see last pages, Good
application is for assessing key aging of transistor device
parameters also in numerous publications on this. Ch 7 has

application of this TAT model. e ® & & & &
Alec Feinberg — DfRSoft
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Power Aging Laws and
the Weibull Distribution
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Example of Parametric Failure Rate Connection
to Weibull

m Next we would like to illustrate that if parametric age
occurs nonlinear in time (power law) then we can
associate the power law with the Weibull failure rate
parameters at least in the parametric case.

Power Law aging Weibull Failure Rate
K N
P()=Ct B s
s A0 =5 (1)
104
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Aging Power Laws and the Weibull

Distribution — Influence on Beta

* Many parametric aging laws have
power law dependence. Consider
a very simplified creep model

(N <1 Stage 1
Strain e=AL/L
AEZEOIN IN >1 Stage?2 Ag

N >1 Stage3 Stag]el /

* Were Ac 1s the creep strain and t &4
is the time, and &, and N are - | Stage2 ' Stage3
constants of the creep mode] ~ nitial Elastic | /|
Strain Ny |

phases (note: & has units of

strain/time and strain itself 1s
unitless so really 1/time)

Alec Feinberg — DfRSoft
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Creep Rate Stages have Similar Form to
Bathtub Curve

s The creep rate 1s dAs

Inferences

A =fg L

Creep Rate,
Weibull Fail Rate
Comparison

" 1
g, =—=
o a'B
* Ballpark value see
g(E) other slides

N-1
— =g Nt
dt
Similar shape to Similar shape to  Similar shape to
Infant Mortality Steady State Wear Out
dAe dAe dAe
dt Stage 1 dt Stage 2 dt Stage 3
0<N<1 Nz1 N>1
/"
Time Time Time
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Parametric Creep Rate, Weibull Failure
Rate & Bathtub Curve

A direct comparisons between creep rate and the failure rate,
Results N~ 3.

Here N between 0 and 1, say B=N=1/2, indicating that creep is
in the Creep Primary Stage 1, similar to infant mortality region
(early failure)

If N=1, constant creep rate, Secondary Creep Stage 2, similar
to steady state region of the bathtub curve as f=1.

N=/p>1, Tertiary Creep Stage 3 similar to wearout phase of the
bathtub curve.
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Manipulation of failure rate and creep

fatlure
= The expected fraction of devices that will fail
AE 1n the time interval Ar then 1s A() _2E and

At
At) = limAE = dE
A0 At dt
1 dR(t
__ (t) whre Ap_ RO-R@+AD
R(t) dt R(t)

= Parametric failure threshold t; ;.

N
Agfailure(t) =&,

o  failure

Alec Feinberg — DfRSoft
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Basic Proof for Parametric Failure Rate

= The expected fraction of devices that will fail
AE(Ag(t)) in the time interval Af then must be a
function of the aging law so that the failure rate 1s

A0 = dE  d(Ag, (1))
d(Ae, (1)  dt

= By comparison to Weibull failure rate we have

N=pB and g(E), =(/a) or ¢ =k(l/a)

Recall

— g(E)E,N1" 2@:55@/“

= where g( E) — db =1/k See example for k
d (Agfailure (t))

g(E) 1s dependent on the parametric failure threshold value as is Weibull Alpha
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Example: Weibull Analysis and PoF Law
m Weibull Analysis

Confidence

Weibull Regression F

Enter Percent

RRX

Beta

Charac Life

MTBF

(63.2% failure)

Expectation

1.818488305

812.8885144

722.54536

64

Weibull

Failure Times

200
350
500
650
770
200
1050
1200

Curmulative Prob abilty

120

40 A

Weibull Regression Probability (CDF) Plot and Data FIT
(Fit=Green, Data= Blue)

DfR Software

Agfallure (t) 6‘ t

failure

Failure Criteria=10% creep elongation

N=1.8=p
& 0 4 failure Ae failure

1.21E-06 200 0.10
2.63E-06 330 0.10
1.39E-06 500 0.10
5.04E-07 630 0.10
6.37E-07 f70 0.10
4.81E-07 900 0.10
3.65E-07 1050 0.10
2.87E-07

1200 0.10 \

N\
Agfallure =0.000000287x (1200) =(

g — DfRSoft



Characteristic Life and Average value of €,

= Average g, 1s related to characteristic life

s —h ]

1
_ —k5.8E—6
° a” 813'*®

g_ =1.7E —6 From data prev. page
(0]

k=1.7/5.8=0.293=1/g(E) Recall g(E)s, =(1/ )’
We see ballpark

5_0 ~ (1/&)'8 and g(E)=3.4
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Here are Some Values You Can Check and

note...
= Playing around I got

AE failure a g(E)

10% a13 3.4
50% 1987 0.63
100% 2921 0.34

= So g(E)=1 when 5_0 =(1/a)’
solving this occurs when a=1604 hours which looks like 1t

will occur somewhere between 10 and 50% Agg,.e

2 As we noted g(E) 1s dependent on this parametric failure
criteria
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Conclusions

m We have now connected both the Weibull Model and the
Lognormal model to physical aging laws.

n This analysis is for Parametric aging laws. However, when
parametric aging dominates a catastrophic failure event, it
appears likely that the catastrophic failure rate is related to the
parametric aging law.

n Alternately, we have also connected distributions to parametric
aging laws. This means we can often deduce the physics of aging
from failure distribution parameters, like Weibull beta.

u  Appropriate references for citing this work:

o A. Feinberg, “How Aging Laws Influence Parametric and Catastrophic
Reliability Distributions,” RAMS 2017 Conference, and in
ieeexplore.ieee.org/iel7/7879516/7889646/07889800.pd,

o Also (next page)
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