DfRSoft.Com

Support@dfrsoft.com, 617-943-9034

Course: Accelerated Test, Design, and Analysis for Demonstrating Reliability

Course Format: 3.5 Hours Webinar, \$350

Description This course is designed to focus on all aspects of Accelerated Testing, its Design and Analysis. We will first overview accelerated test

historical models (for Temperature, Temperature-Humidity-Bias, Temperature Cycle, Temp. Cycle Frequency Effect, Engelmaier Solder Joint Model, Vibration, Electromigration (Black Model, Silver migration), Capacitor-Voltage, Dielectric Breakdown, and General Power Law models We will overview how to determine key parameters for these models. We will then discuss accelerated test planning. How do we know what test to do and at what stage to do them in a program plan? How to use a top-de FMEA as a program planning tool. We will introduce a stage gate approach. Test design failure modes will be utilized in planning. W will also overview general qualification test planning including multi-accelerated test des to demonstrate one failure rate with confider bonds and accelerated end-of-life reliability planning. Included will be a "CALT" like method for environmental profiling so that o can profile a product's environment more accurately as field stress conditions vary. Th will help set realistic accelerated test goals a will make for more accurate MTBF prediction In the analysis area we will look at statistical data methods, including Chi-squared accelerated multi-test planning, the new Chisquared and other accelerated reliability grov methods, lifetime accelerated testing using Weibull/Lognormal test analysis, and multi failure mode assessment. What to do when multiple independent tests are performed and

550			
	<u>Course Outline:</u>		
	Accelerated Testing Models & Methods		
IS	Temperature Arrhenius Model		
	 Historical Activation Energies 		
	• Testing to Find an Activation Energy		
gn	for a Failure Mode		
/e	 Temperature-Humidity-Bias Model 		
ew	• What to do if test biased causes the		
	local relative humidity to change		
	significantly due to device heating		
	• Estimating the Local Relative		
	Humidity Assessment in power		
	devices		
	Temperature Cycle Models		
	 Coffin-Manson 		
s).	o Modified Coffin-Manson (Norris-		
	Lanzberg)		
	 Engelmaier Model 		
e	 Accelerated Vibrations Test Models 		
)	• Sine vs. Random Accelerated Testing		
own	• Voltage Acceleration (Capacitors)		
hu	Model		
Uy Io	• Dielectric Breakdown		
C	• Silver Migrations Testing		
sion	• Mechanical Accelerated Test Power		
nce	Law Model		
test	• Power Exponent Lesting		
	• Electromigration Black Model		
one	• Environmental Profiling Your Product S Multiple Stress Use Conditions for Test		
	Planning		
is	Training		
nd	Accelerated Test Design & Analysis		
ons.	• Key Published Standards on		
1	Qualification Testing		
	• Typical Accelerated Test Plans for		
-	Semiconductors Hybrids and		
wth	Assemblies		
	• Using Test Standards		
	• Designing Your Own Test Plan		

• Test Design by Failure Modes Using Top Down FMEA

we wish to include all data in our analysis. This	 Zero Failure Test Design
is an intense course, be prepared for the full	• What is Confidence (Engineering vs.
session.	Statistical Confidence)
	 Chi-Squared Confidence Testing
	• Single Environment Test Design &
	Analysis (MTBF)
	• Multiple Environment Test Design &
	Analysis (Combined MTBF
	Assessment)
	• Confidence Testing for an MTBF
	value with multiple test environments
	• Accelerated Lifetime Test Using Weibull
	& Lognormal Analysis
	• Main Distributions of the Bathtub
	Curve, Weibull,
	• Exponential, Weibull and Lognormal
	• Weibull Beta
	• Reliability Plotting (life data analysis,
	censored data)
	Reliability Growth Testing
	• Chi-Squared Accelerated Reliability
	Growth
	• DART Testing (Including HALT)
	Publishing Your Accelerated Test
	Results for Your Company
	results for Four company

Instructor: Dr. Feinberg has a Ph.D. in Physics and is the principal author of the book, *Design* for Reliability. He is also the owner of the company DfRSoft, which provides software and services worldwide for Reliability, Quality and Engineering. Alec has provided Reliability & Quality engineering services in all areas and on numerous products in diverse industries for over 35 years that include solar, thin film power electronics, defense, microelectronics, aerospace, wireless electronics, and automotive electrical systems. He has extensive expertise in the area of Design for Reliability & Quality, shock, vibration, and HALT test and analysis methods in working on Military and Commercial products. He has provided training classes in Design for Reliability and Quality, Shock and Vibration, HALT, Reliability Engineering. Alec has presented numerous technical papers and won the 2002 RAMS Alan O. Plait best tutorial award for the topic, "Thermodynamic Reliability Engineering". He is a major contributing author to the new book *Physics of Degradation in Engineered Materials and Devices* due out soon. Alec is based in Raleigh, North Carolina.