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Software incorporates. We explain how physics of failure aging laws can reduce test time and help predict failure rates.  
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SUMMARY & CONCLUSIONS 

 
In this paper we describe how these physics of failure aging 
laws influence reliability distributions, not only the type of 
distribution, but the rate of failure as it relates to the aging 
rate. We illustrate how one can predict parametric failure 
rates based on the physics of failure aging laws when 
known.  
 
A number of statements are concluded. We show that when 
a manufactured part has a key parameter that is distributed 
normally, and the physics of failure aging for this key 
parameter ages in log-time, its failure rate is lognormally 
distributed.  
 
When the physics of failure is a power law, we illustrate 
how the Weibull beta and eta can be obtained from the 
physics of failure aging law exponent and amplitude in the 
parametric case. We use the example of creep, and make 
direct comparisons between the full creep ‘rate’ curve and 
the bathtub curve. Although the example of creep is used 
many aging laws have a similar power law forms and can 
be applied in a similar manner. Although we work though 
parametric failure rate statistics, one can relate it to the 
catastrophic case. 
 

1 INTRODUCTION 

 
The most popular aging laws that are observed in the 
literature are: 

 

Power Law:  KCttP =)(  

where P is the aging parameter of interest, C and K are 
constants, and t is time. 
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where A, and b are constants, P is the parameter of 
interest and t is time. 
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where R is the aging rate of a parameter, Ro is a 
constant related to a time constant 1/to. The rate R goes 
inversely with time. 

 

It is common if the aging law is known to simply plug it 
into the distribution dependence. Then the rate of failure 
becomes known by fitting failure data. However, when 
parameters are unknown, what can we say about the rate of 
degradation from the observed failure rate statistics. 
Alternately, if the physics of failure law is know, what can 
we say about the parametric failure rate. There are two 
main types of failure processes that are typically analyzed 
in reliability. These are catastrophic and parametric failure 
rates. Often parametric failure is analyzed using 
catastrophic analysis, a pass fail approach using a 
parametric threshold. For example, greater than 15% 
change might be considered a threshold for a failure. 
Although, when we look a little closer, using parametric 
failure statistics instead, other insights can be found. Such 
influences in parametric data can in fact be related to many 
seemingly catastrophic failure events. That is, what 
appears as a catastrophic event is often due to an 
underlying parametric aging process that eventually 
abruptly fails. In this case, most of the degradation lifetime 
prior to catastrophic abrupt failure, actually occurred due 
to a graceful aging that can be modeled. As an example, 
creep abruptly fails at end of life, yet most of its lifetime 
can be modeled prior to catastrophic failure with a graceful 
parametric aging law using either a power or a log time 
aging law. In this paper we provide a number of examples 
using both Weibull and lognomal statistics that 
demonstrate how we can associate the reliability statistics 
to aging model parameters.  
 
Reliability distributions actually are designed to fit regions 
of the bathtub curve shown in Figure 1. The bathtub curve 
is shown below.  



 

 
Figure 1 Reliability bathtub curve model 

 
For example, the Weibull distribution is basically a power 
law over time. If we were to invent a distribution based on 

wear-out for example, we might use a failure rate λ(t) 
proportional to time raised to a power greater than one. For 
example, wear-out on a particular device may fit a power 
law with time squared as 
 

2toλλ =     (1) 

 
This is essentially a Weibull failure rate, although the 
actual Weibull failure rate is written in a more 
sophisticated way as 
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Figure 2 Power law fit to the Wearout portion of the  

                    bathtub curve. 
 
 

This is still a power law and in this case, beta would equate 
to 3. Note alpha is the characteristic life. Many reliability 
engineers tend to favor the Weibull distribution because of 
the physical significance of the beta parameter. That is the 
power exponent in the distribution helps to determine the 
portion of the bathtub curve that we are in. Often 
semiconductor engineers work with the lognormal 
distribution [1,2]. 
 
True statisticians likely will tell you whichever distribution 
fits the data best; will provide the most accurate 
assessment. However, we might ask a deeper question, 
what is the physics of failure law influencing the failure 

rate distribution. How does the statistical distribution help 
us to determine the physics of failure models or alternately 
how does the physics of failure aging rate help determine 
the parametric failure rate statistics?  In this paper we will 
examine the connection between the physics of failure 
aging laws and the parametric failure rate distribution 
statistics. Therefore, our initial discussion will revolve 
around parametric reliability distributions. Once these are 
established, we can often infer how the catastrophic 
distribution will follow or alternately we can help from 
failure rate data determine physics of failure models. 
 

2  LOG TIME AGING AND THE LOGNORMAL 

DISTRIBUTION 

 
We know from production, that many parameters tend to be 
normally distributed. For example, the following 
parameters were found to be normally distributed, quartz 
crystal frequencies [6->3], beta gain for transistors [8->4], 
transconductance of FET semiconductors [4].  We have 
selected these in particular as the physics of failure 
parametric aging law is in log time.  That is: 
 

We would like to illustrate that if parts are normally 

distributed and age in log-time, then their failure rate 

is lognormal. Furthermore, we can demonstrate that 

power laws (like that shown in Eq. 3) where the aging 

exponent for time (K is between zero and one, can be 

also modeled as aging in log-time, this means that the 

true physics may actually not be a power law but 

instead, a log time law. 

 
To that end, the general form of the a log time model for 
these devices is found to be [3, 4] 
 

KCtbtAP ≈+= )1ln(    where 0<K<1 

 (3) 

 
and to simplify, when bt>>1 we can write 
 

   )ln( btAP ≈   (4) 

 

Here P is the parameter of interest, such as beta transistor 
aging, or crystal frequency drift and so forth. 

 

In order to have parametric failure, one needs a definition 
for failure. To this end it is customary to define a 
parametric failure threshold. That is, when a component 
ages, one of its key parameters drifts out of specification. 
This value can be used as the failure threshold. For 
example, transistor beta degradation can be taken as a 
change of 10 or 20% of the original value. The figure 
below depicts how these key parameter age in log time 
failure. In the figure the threshold is given at P=1.37 for 
time t=3. Here time units are not defined but are usually in 
hours or months and so forth.  

 



 
Figure 3 Log time aging with parametric threshold tf 

 
When manufactured parts are normally distributed, a 
parameter of interest can be statistically assessed using 
Gaussian probability density function (pdf), g(p, t) 
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Here P is the parameter of interest. Now consider that the 
parameter is aging according to a log-time equation such as 
Equation 3, its time dependence must then be lognormally 
distributed, that is, we have from Equations 4 and 5  
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Where for purposes of illustration in Equation 4 we have 
let A=b=1 

 
Figure 4 PDF failure portion that drifted past the  

                       parametric threshold 
 
It is customary to change variables so that we may formally 
obtain the lognormal distribution for the above equation, 
then 

dttg
t

dt
tg

dt
dt

td
tgtdtg

)(ln)(ln

ln
)(lnln)(ln

=

==

       (7) 

We can now write with this change of variables 
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Here, the function f(t:t50, σ) is the lognormal probability 
density function.  
 
The cumulative distribution function cdf , F(t) is related as 
 

dt

tdF
tf
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The cdf for the lognormal distribution can be written in 
closed form with the help of the error function (erf) as 
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Often, one writes the lognormal mean as 

)ln( 50t=µ           (11) 

And the dispersion is assessed graphically as 

)/ln( 1650 tt=σ         (12) 

Thus, the physical implications can be related to log-time 
aging, in detail,  
 

when a manufactured part has a key parameter that is 

distributed normally, and ages in log-time, its failure 

rate is generally lognormally distributed. This is likely 

the case for power law aging models that are typically 

found empirically as well when the power 0<K<1 in 

Equation 3. 

 
Although we have described this for parametric failure, it 
can be argued that many catastrophic failure mechanisms 
dominated by log-time aging will also fall into this 
category.  For example, if a transistor is aging most of its 
lifetime in log-time then suddenly fails catastrophically, but 
it was due to the underling log-time aging mechanism like 
gate leakage, then the transistor’s failure distribution is 
likely lognormal.  The parametric threshold in this case 
resulted in a true catastrophic failure event with most of its 
lifetime aging logarithmically in time. 
 
We exemplify with a common log time aging model [2,5,6, 
7], writing an aging parameter P with log-time aging form  
 

( )50ln)1ln( tAcbtAP
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where the approximation is for bt>>1. Here Ac , are 

average values and 
ave

bAc ln= and ln(t50) is the 

mean of [ln(t)] failure time. Then Equation 8 for the 
parametric PDF becomes 
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The CDF is then 
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2.1 What Have We Shown? 

 

If we have a bunch of devices with a key parameter that we 
know obeys Eq. 13., we can now, prior to any aging, find 
the mean and sigma using simple Gaussian statistics 
measuring typically 30 non aged devices. Now we can take 
from this population a few devices, say 3 devices and 
perform an aging experiment on them, we then find the 
parameters of the physics of failure aging law in Equation 
13. We now immediately know the lognormal failure rate 
statistics without having to do a full life test on 1) a large 
population and 2) we never actually have to age any of the 
3 devices to failure! We can establish a failure threshold 
and predict when 50% of the population will pass this 
threshold (see Figure 4).  Alternately, if we find the 
parametric lognormal failure rate, we can determine the 
parameters of the physics of failure aging law in Eq. 13. 

 

3  AGING POWER LAWS AND THE WEIBULL 

DISTRIBUTION – INFLUENCE ON BETA 

 

Many parametric aging laws have power law dependence. 
Consider creep as an example 

nat=∆ε   
(16) 

 

where ∆ε is the creep strain and t is the time, and a and n 
are constants of the creep model [8]. This simple equation 
can actually model both the primary and secondary creep 
phases [8], but not the 3rd stage tertiary creep phase as 
shown in Figure 5.  

 

Now we would like to provide some new understanding to 
the Weibull distribution and how underlying aging laws 
might influence the distribution or how analysis might help 
us in determining an aging law. As a point of reference, we 
write the popular Weibull failure rate as  
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For the traditional Weibull model, β<1 is infant mortality, 

β =1 is steady state, and β >1 is wear-out. 
 

There are traditional functions to help obtain the failure rate 
in reliability statistics. The functional definition for the 
instantaneous failure rate are defined with 
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Where R(t) is the reliability function, f(t) is the pdf, and 
F(t) is the CDF. 
 
However, for what we wish to do we are going to start off 
with a simplified definition for the average expected failure 
rate 

t
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where ∆E is the expected fractional units that fail in the 
time interval ∆t. Then in the limit as ∆ becomes 
infinitesimally small, we write the failure rate as 
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Let’s now look at an oversimplified parametric aging 
power law form for the three stages of creep 
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There are numerous time dependent creep models that are 
commonly used that have more complex forms and are 
better suited to model creep. For example, Eq. 21 has 
different stresses  that affect the creep slope in Figure 5 and 
6. This particular model is oversimplified, but it is roughly 
capable of modeling all three stages of creep shown in 
Figure 5. This oversimplified power law form is very 
instructional as there are numerous similar power physics 
of failure aging laws (such as metal fatigue S-N curves, 
capacitor voltage breakdown and so forth) of this type in 
physics of failure applications. The three stages of creep 
are shown in the Figure 5 and 6. 
 
When N is between 0 and 1 it models Primary Stage 1, 
when N is 1 it models Secondary Stage 2, and when N>1 it 
models Tertiary Stage 3.  The creep rate is  
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Figure 5 Creep curve with all three stages 

 
 
Now using the different power law values for creep, we can 
plot the creep rate curve as shown in Figure 6 [8]. 
Interestingly enough the bathtub curve in Figure 1 has a 
similar shape to the creep rate curve shown. Note that Stage 
2 of creep is not typically flat like the idealized bathtub 
curve (which likely may not be flat in the non idealized 
case). 

 

 

 

 
Figure 6 Creep rate power law model for each creep stage 

similar to the bathtubcurve in Figure 1 
 
What we are thus tempted to do is try and merge the 
physics of creep to the statistical failure rate equations and 
make inferences. We will see that it is insightful. 
 
Let us start by saying that for any creep phase, we can have 
a parametric failure corresponding to the parametric failure 
threshold tf , so that the time to failure in general will be 
given by 
 

N
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Here we assume the following parametric treatment. In 
testing for example, when a device passes the failure 

threshold, ∆εf , it will correspond to a time tf, We count the 
device as a failure and proceed to perform some sort of 
traditional reliability catastrophic type of analysis to find its 
failure distribution and failure rate based on the times to 
failure for each device that passes the creep threshold. Now 
we have no idea of the life test parametric distribution. 
 
However, in this discussion we would like to proceed and 
make inferences from the aging law on how it influences 
the statistics. The expected fraction of devices that will fail 

E∆ (∆εf(t)) in the time interval ∆t then must be a function 

of the aging law so that the failure rate as we have defined 
it above is 
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Here we have let  
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If we assume a Weibull distribution for the parametric 
failure rate, we can now can make some observations. By 
direct comparison to the traditional Weibull parameters 
between Equations 17 and 24 we conclude 
 

β=N   and  βαε )/1()( =oEg
 

(26) 

 

So in this model if N is between 0 and 1, say β=N=1/2, 
indicating that creep is in the Creep Primary Stage 1, then 
we are also in the infant mortality region. This is 
reasonable as it indicates early failure. If N=1, then we 
have a constant creep rate which is in the Secondary Creep 
Stage 2. This is also associated with the steady state region 

of the bathtub curve as β=1. Finally, if N=β>1, we reach 
the Tertiary Creep Stage 3 we are in wearout phase of the 
bathtub curve. Therefore, the physics for creep rate 
matches the statistics reasonably well, 
 

 Essentially we have made direct comparisons 
between the creep rate in Figure 6 (Eq. 22) and the 

failure rate in Eq. 17, finding that N~ββββ. Therefore, it 
is likely that for numerous aging power laws, when 

carefully modeled as we have done for the creep rate, 

can be directly tied to the value of the Weibull Beta. 

We have now connected the Weibull Model to physics 

of failure aging power laws.  
 
In catastrophic analysis, it is customary to assign alpha to a 
value of the aging equation, for example 
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This is a number so we can just keep it in mind. It is 
evaluated at the failure time for parametric failure. 
 
3.2  What Have We Shown? 

 
We have used the creep physics of failure power aging law 
to connect the Weibull beta to the creep aging law 
exponent. As well, we can estimate the Weibull eta from 



the physics of failure aging law based on a sample 
population enough to satisfy Eq. 25-27. Although we have 
done this for the creep example, this holds for other physics 
of failure power aging law having the creep form. 
Therefore, we can predict the parametric failure rate based 
on a small sample size which is large enough to estimate 
the physics of failure aging law and the requirements of Eq. 
25-27. We do not have to actually achieve failure on life 
test for this prediction in the parametric case since the 
aging law can predict the life. Although primarily for 
parametric failure rates, the catastrophic case is logically 
linked in a similar manner when most of the lifetime is 
dominated by a power aging law. Here, the intuition for 
Beta value can assist in Weibayes analysis. 
 
4  ARRHENIUS ACTIVATION AND LOG(TIME) AGING 

 
The last aging law is Arrhenius activation. This popular 
model has been shown to cause parametric Log(time) aging 
rates [2, 5] which we have shown can be related to the 
lognormal distribution. Due to page limitation in this 
article, this model is not reviewed here. However we would 
like to direct the interested reader to references 2, 5, 6 and 
9 as these provide an excellent overview of this aging law. 
 

REFERENCE 

 

1. P. O’Connor, A. Kleyner, Practical Reliability 
Engineering, 5th Edition, John Wiley & Sons, London 
2012 

2. A. Feinberg, D. Crow, Editors, Design for Reliability, 
M/A-COM Press 2000, CRC Press, 2001. 

3. A. Feinberg, Gaussian Parametric Failure Rate Model 
with Applications to Quartz-Crystal Device Aging, 
IEEE Transaction on Reliability, p. 565, 1992. 

4. A. Feinberg, P.Ersland, V. Kaper, A. Widom, “On 
Aging of Key Transistor Device Parameters,” 
Proceedings - Institute of Environmental Sciences and 

Technology, 2000, 231. 
5. Feinberg A., Widom A., “On Thermodynamic 

Reliability Engineering”,IEEE Transaction on 

Reliability,  June 2000, 49 (2), 136.  
6. A. Feinberg, Thermodynamic Degradation Science, 

Physics of Failure, Accelerated Testing, Fatigue and 

Reliability Applications, John Wiley & Sons, London 
2016. 

7. A.W. Warner, D.B. Fraser, and C.D. Stockbridge, 
Fundamental Studies of Aging in Quartz Resonators, 
IEEE Trans. on Sonics and Ultrasonics, 1965, 52.  

8. J.A. Collins, H. Busby, and G. Staab., Mechanical 
Design of Machine Elements and Machines. 2nd ed. 
New York: Wiley. 

9. A. Feinberg, Gaussian Parametric Failure Rate Model 
with Applications to Quartz-Crystal Device Aging, 
IEEE Transaction on Reliability, p. 565, 1992. 

 

 

 

 

BIOGRAPHY 

 

Alec Feinberg, Ph.D. 

DfRSoftware Company 

DfRSoft.com 

Email: support@dfrsoft.com, dfrsoft@gmail.com 

 
Alec Feinberg is the founder of DfRSoft. He has a Ph.D. in 
Physics and is the principal author of the book, Design for 
Reliability. Written in an industrial environment, it is a 
very practical book and has a very extensive approach to 
the DfR process using a stage gate method since products 
are develop in phases. Alec uses this method in his 
reliability training classes found on the DfRSoft website. 
Alec is also the principal developer for DfRSoftware which 
is the most thorough reliability tool currently available and 
is also used to accelerate learning in his training classes. 
Alec industrial experience has allowed him to provide 
extensive reliability engineering services in diverse 
industries (AT&T Bell Labs, TASC, M/A-COM, Tyco 
Electronics, and Advanced Energy) for over 35 years on 
solar, thin film power electronics, defense, 
microelectronics, aerospace, wireless electronics, and 
automotive electrical systems. He has provided training 
classes in Design for Reliability & Quality, Shock and 
Vibration, HALT, Reliability Growth, and Electrostatic 
Discharge. Alec has presented numerous technical papers 
and won the 2003 RAMS Alan O. Plait best tutorial award 
for the topic, “Thermodynamic Reliability Engineering.” 
Alec has a new book, Thermodynamic Degradation 
Science: Physics of Failure, Accelerated Testing, Fatigue, 
and Reliability Applications (John Wiley& Sons, 2016).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 


