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SUMMARY & CONCLUSIONS 

 

In part I of the paper published [1] last year, we extend the 

concept of damage originally developed empirically by 

Miner, using the concept of thermodynamic work and free 

energy. We first explain the equivalency of free energy to 

damage where a products free energy is the amount of 

useful work that a product can deliver. Knowledge of this 

provides useful lifetime estimates. We develop ways to 

measure the free energy in products to help assess its 

lifetime. The main approach is to use what we call a 

product’s “Ultimate” work energy.  

  

In this paper, we explore practical applications in the area 

of fatigue and battery cycle life. Often when a new 

approach comes along, it is not easy to fully appreciate its 

applicability. Therefore, in this paper we will provide these 

new added examples applied to Aluminum fatigue and 

battery cycle life; These somewhat different areas 1) 

fatigue of metals and 2) an energy device, allows one to 

gain deeper insight into the free energy approach to 

determining a products useful life time. This will exemplify 

the efficiency of the “Ultimate” work energy damage 

equivalence approach for doing common but challenging 

problems. Example illustrate that tools like the S-N curve 

while obviously illustrative, are not necessary and perhaps 

not the best way to characterize materials, as well this 

approach is anticipated to reduce experimental 

measurement time. 

 

A deeper understanding of the free energy damage 

equivalency approach entails knowledge of a specific work 

path to a particular problem. Once applicability is 

understood, the tool should be helpful for numerous areas 

in physics of failure applications. 

 

1. INTRODUCTION 

 

As a summary of the first paper we started with Miner’s Rule 

[2] written by Miner in terms of a ratio for ni cycles performed 

to Ni  cycles to failure per each i
th
 stress level as 
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We noted the uniqueness of this rule as it presented back in 

1945 the concept of quantifying damage whether it is 

cumulative or otherwise. We then described the energy 

approach [3]. The energy approach goes beyond Miner’s rule 

for it is more general and exact. In the evolution of the energy 

approach we measure damage in thermodynamic work terms W 

[3] as  
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Thus, we have a physics of failure law for damage whose 

origin came from Miner’s formulation.  

 
We pointed out that one of the key issues is the value of the 

work to failure in the denominator? If we know this we are 

in a good position to assess damage.  

2. FREE ENERGY AND DAMAGE  

We noted that in thermodynamics, a materials free energy 

provides an assessment of the amount of useful work that a 

product can perform. Therefore, products lifetimes can be 

assessed using this approach and reduced test times are 

anticipated because once you know the free energy at one 

stress level, it is the same for all stress levels. This is 

clearly demonstrated in our examples here. 

In Section 2-5 we will for convenience, summarize the 

concept of free energy-damage approach developed in the 

first paper for the reader. However, we strongly recommend 

that the reader obtain the original paper.   

In the original paper we noted that the work that can be 

done on or by the system is bounded by the system’s free 

energy [2] 

Work ≤   Free Energy Change of the system     (3) 

 

This is the key concept that is developed. 

 
3. FREE ENERGY DAMAGE EQUIVALENCE 
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From Equation 3, we propose that a materials Ultimate 

Work Energy (WUE) for a given failure mode or mechanism 

is the most measurable and useful property to assess a 

materials free energy  

 (ΔFree Energy)j
th

 ≥(Maximum Ultimate Work 

Energy)j
th

=(Maximum Damage Amount)k
th

 

(4) 

where 'j' is for the j
th
 type failure mode/mechanism of 

failure.  Again once we know the free energy for the work 

path of interest, we can estimate the products useful work 

and life. 

 

As damage increase, the free energy decreases and so does 

the available useful work. If the system’s initial free energy 

is denoted by Fi (before aging) and the final free energy is 

denoted by Ff (after aging), then Ff < Fi and 

 

)()( UEWEnergyFreeFF failuredamageMaxfi  
       (5) 

 

This is the free energy damage equivalence. Damage 

equivalency as originally developed by Miner, is a unitless 

quantity and from Equation 5 is  
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When cumulative damage reaches the value D=1, failure 

occurs. 

 

4. ULTIMATE WORK ENERGY 

In the original paper we denoted W(UE)0+ as a 

measurement of the ultimate work energy  

 

)()( 0 UEWUEW 
      (7) 

 

The concept is to measure the ultimate work energy in a 

short time (i.e., 0+) so that it is reasonably accurate and 

representative of the actual ultimate work and product life. 

 

Once we know the W(UE) for a particular failure mode, 

then energy can be subtracted when work is accomplished 

as damage accumulates. 

If interim work is denoted by Wi, then the work remaining, 

Wr, in a product is 

Wr=W(UE)-Wi   (8) 

5. FATIGUE AND ULTIMATE WORK ENERGY 

In this paper we will focus on fatigue examples. Here we 

provide a quick review of fatigue concepts from our first 

paper. In our first example, we will make use of an 

expression for fatigue cyclic work, we look at plastic strain 

() caused by a sinusoidal vibration level G stress () in the 

material. A common model for the strain in this case is [3]  

     
jp

o Gn                (9) 

The cyclic work is found as [1,3]  
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where Y=j+1. Similar to the above arguments, to assess the 

damage we need to have some knowledge of the critical 

damage at a vibration stress level. Let’s assume this occurs 

at N1 cycles at stress level G1. Then the thermodynamic 

damage ratio at any other stress G2 level at n2 cycle is [1, 3] 
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If damage is represented by Dvib=1, 
22 Nn  , and failure 

occurs. We note the time acceleration factor is obtain in 

terms of cycles (N=f T, f is the frequency is considered 

constant, T is the time) as [3] 

 
b

D
G

G

N

N

T

T
AF 



















1

2

2

1

2

1   (12) 

 

where b=Y/P. AFD is commonly used relationship for cy-

clic compression where we assumed the frequencies f1=f2.  

 
It is helpful to write the linear form for cycles to failure, for 

a particular stress. This is deduced to within a constant 

from the above equation (12) 
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where 
bGNA  22 /  treated as a constant. This is 

essentially the relation that holds for what is called the S-N 

curves. Note that if we write the cyclic equation with G S 

where S is the stress, we have 
 

bSCN  11
  or  BNKS  11

  (14) 

 

where B=1/b and C is the proportionality constant when 

going from G to S and K is a constant. The relationship is 

generally used to analyze S-N data, this is formally known 

as Basquin’s equation which is used in the area of high 

cyclic fatigue. 

 

6. EXAMPLE : ULTIMATE WORK ENERGY - 

STAINLESS STEEL FATIGUE LIFE 

 



3 
 

We are now in a position to look at an example. To use this 

approach for fatigue, first we need to understand that 

fatigue is dominated by tensile force rather than 

compressive force. That is, most of the damage in fatigue is 

due to tensile (rather than compressive) work. This helps us 

to identify the material’s key property that we would need 

to know.  Using the ultimate energy approach we will solve 

the following problem without an S-N curve and make 

comparisons: 

 

 T6 Aluminum 6061 alloy breaks apart at 10
3 

cycles of work at a tensile stress of 310 MPa with 

a strain change of ~17%. A good indication of its 

ultimate work energy. Knowing the W(UE)+, find 

a rough estimated of the fatigue cycle life at 175 

MPa and compare it to SN curve prediction. Use 

Eq. 11 for the thermodynamic work (assume 

Y=8).  

 Show that Miner’s assumption in this case still 

seems reasonable. What is it about the S-N curve 

that appears to indicate that Miners assumption 

will eventually be off? Find P to fit the S-N curve 

in Figure 1. 

 Provide a check that the ultimate work energy is 

the same at stress level 310 MPa as it is at 175 

MPa. 

 

In our theory, we might be tempted to use N=1 cycle as the 

point to assess the free energy. However, the further we are 

away from N=1, the more accurate the free energy estimate 

is likely to be for S-N curve ultimate energy so 1000 cycles 

may be an excellent point to estimate the ultimate energy.  

The S-N curve for Aluminum is shown below. 

 
Figure 1 S-N Curve of 6061-T6 aluminum alloy [6] 

 

Summarizing the problem statement 

 

 Let S2=310 Mpa, N2=1000, S1=175 Mpa, what is 

N1 and P? 

Then we must have for work to failure W2=W1 such that 

D=1 in Eq. 11 so we write 
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Here we have substituted S=G in Eq. 11 and taken the work 

ratio. Note this physics of failure approach is strictly due to 

the ultimate strength free energy approach with the Miner’s 

assumption of  P=1, so that  from Eq. 10 

W(N,S)=NW(S)=As
Y
 N  (16) 

One should also realize that the physics of failure equation 

above is for a specific work path due to tensile loading of 

the aluminum shaft. Other alternate loading may require 

modification. For example, shaft smoothness, shear issues 

in the work path etc. Therefore Eq. 15 and 16 are for a 

specific work path and is key in applying this theory. 

Solving for N1 Eq. 15 gives us 
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We can make a comparison to the S-N curve and we find 

excellent accuracy of N=1E5 cycles at 175 MPa. Here we 

did not need the S-N curve; we needed knowledge only of 

the ultimate work energy and the physic of failure equation 

for the work path. 

 

Note that if we did intermediate work of type W2, and W3 

we can actually subtract off the work to find the remaining 

work then proceed to find N1 as above,  

 

W(Remaining)=W(UE)-W3-W2  (18) 

 

Then the predicted cycles to failure at any stress level is 

 

N=W(Remaining)/AS
Y  (19) 

 

Recall that S=310 MPa, N=1000 cycles, and W(UE) value 

must actually be found in joules of work that is not reported 

here to determine the W(UE).  

 

Note that S-N curve shows a non straight line on the semi 

log plot. This indicates that N is showing some non linear 

effect so Miner’s rule may eventually be off (i.e. P≇1) 

somewhat. An estimate fitting the curve with Y=8 is 

P=0.997.  So Miner’s assumption is fairly reliable. 
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Lastly check Eq. 15 showing that the free energy is the 

same at the two stress levels of 175 and 310 MPa where 
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This is very close to 1, as required. This simply also 

reminds us that the free energy can be found at any stress 

level. Obviously a high stress level reduces experimental 

test time. 

EXAMPLE: ULTIMATE WORK ENERGY FOR 

SECONDARY BATTERIES  

We have already provided an example for primary (non 

rechargeable) batteries [1] in part 1 of the original paper. 

Here we will apply this method to secondary (rechargeable) 

batteries.  

We offer two Models to aid battery manufactures in cycle 

life predictions. 

METHOD 1: MINER’S RULE MODELS 

Although metal fatigue quite often uses Miner’s rule in 

assessing cycle life, battery manufacturers are either not 

familiar with this method or understand its applicability to 

battery cycle life as has been previously described [5]. 

In terms of Miner rule approximation we have from 

Equation 2 
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Battery manufacturers find the N cycles to failure as a 

function of Depth of Discharge (DoD). For example, if a 

battery has 10% of it charge remaining, its DoD is 90%. 

They would then recharge it and repeat n cycles, after a 

certain number of cycles N, the battery is unable to 

recharge.  Now we deduce that this work to failure is the 

same amount for any cyclic Depth of Discharge (DoD) size 

and approximately equal to the ultimate energy, that is 

  jjwNwNwNwNUEW  ...)( 332211  (22) 

This will be verified in Method 2 as was checked for metal 

fatigue in Eq. 20. During a cycle in which there is both 

charging and discharging of the chemical cell, the work wj 

for a cycle of type Cj (DoD amount) can be measured  

 
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j
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where v is the chemical cells voltage, i is the current and t 

is the time. This presents actually two useful equations to 

determine damage. The first being 
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Here we see we can measure the Ultimate work energy 

easily at any reasonable cyclic size, say DoD=90% and 

have knowledge of the denominator. Then at any other 

cyclic size, predict with knowledge of wj for say 20% DoD 

what the number of cycles left will be. For example, if we 

measure at a DoD=90% that W(UE)=N90%w90%=10,000 

Joules and at a DoD=20% we measure for a cycle w20%=10 

joules, we anticipate N20%=1000 yielding Damage=1. 

Alternately, we have the option of using Miner’s rule as 

j
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In Eq. 25, we are not making use of W(UE) but are taking 

advantage of the simplicity of Miner’s rule in applying it to 

batteries similar to metal fatigue. However, here we must 

determine Nj for any cyclic DoD size of interest. 

METHOD 2: MODELING THE ULTIMATE WORK 

ENERGY APPROACH 

Modeling the battery work path using a physics of failure 

type approach has more predictive capability and provides 

insight into battery life. In metal fatigue we focused on the 

stress (s) strain (e) relationship dw= de. However, for 

batteries the conjugate stress-strain analogy [3] w= v dq is 

a bit more challenging as batteries are thermally activated 

as well  battery manufacturer’s present life data analysis in 

terms of DoD and cycles.   

The thermally activated ultimate free energy cycle life 

model is found in the Appendix and is given by 

DoD

oo

c

eiVN
f

UEW
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Here No is the cycles to failure (see Eq. A-3) at the given 

DoD rate, i is the cycle current, and Vo is the voltage (see 

Eq. A-4). Figure 2 provides typical DoD battery cycle life. 

Here it is for Ni-Fe secondary battery cycle life [6]. We 



5 
 

fitted the data in Ref. 8 to two models. The first is a simple 

power law that one might be tempted to use without any 

physics applied, the second is based on the thermally 

activated model found in the Appendix. We see the 

Appendix model is very accurate fit with R
2
=0.9985 

compared to the non based physics of failure model as is 

displayed in the Figure 2 curve fit.  The activation energy 

exponent is found in the fit of 0.031 taken as unitless here 

(see A-5) 

N=849159 DoD
1.456

   R
2
=0.9678  (27) 

N=15428 Exp(-0.031DoD)  R
2
=0.9985 (28) 

Note that although the value 0.031 was found using 

extensive data in Figure 2, it could have been obtained 

either from assessing the free energy or found with just a 

few points say at 80 and 90% DoD levels to reduce test 

time. 

 

In Figure 2, the exponential curve one can utilize Eq. 28 as 

N=Noexp(-b DoD) which is supported in the Appendix with 

Equations  A-3, A-5, and A-6. 

 

 
Figure 2 Typical cycle life versus DoD (this curve for Ni-

Fe battery life cycle) [6] 

 

Let’s apply the ultimate energy approach to the problem. 

We simplify the model for instructive purpose as 

Wi= a Ni Exp (b DoDi),  b=+0.031  (29) 

Where ‘a’ and ‘b’ are model constant with physical 

relevance provided in Equation 26, N is the cycles to failure 

at the DoD level. Similar to the metal fatigue case, we will 

only need b for the analysis for the following example: 

 For Ni-Fe Battery cycle life, it is found that it fails 

at N=1000 cycles for 90% DoD.  This is a good 

indication of the batteries ultimate work energy 

capability. Knowing the W(UE)+ capability, find a 

rough estimated of the fatigue cycle life at 26% 

DoD and compare it to Battery cycle life curve 

prediction. Use Eq. 29 for the thermodynamic 

work (assume b=0.031).  

 Check that the ultimate work strength is the same 

at 90% DoD as it is for 26% DoD. 

 

Summarizing the problem statement 

 

 Let DoD2=90%, N2=1000, S1=26%, what is N1? 

Then we must have for work to failure W2=W1 such that 

D=1 
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Plugging Eq. 29 into the above and solving for N1  
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We can make a comparison to the DoD curve and we find 

excellent accuracy of N=7272 cycles at 26%. Note we did 

not need the curve; we needed knowledge only of the 

ultimate work energy and the physic of failure equation for 

the work path and the thermal activation energy value of 

0.031. 

 

Lastly check Eq. 30 showing that the ultimate work energy 

is the same at the two stress levels at 26% and  90% DoD 

we write 

0000316.1
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as required. This verifies the ultimate work energy 

consistency throughout the DoD life cycle and provides 

confidence in the physics of failure expression in Eq. 26. 

 

APPENDIX A:  BATTERY CYCLE LIFE MODEL 

 

The work for charge-discharge cycling similar to Eq. 23 is 

[3, 5] 

c

LL

tivdt
dt

dq
vdqvw  



  (A-1) 

tc is the cyclic time at the DoD of interest, v is the work 

stress voltage, i is the cyclic current. We introduce n cycles 

as charge-discharge time can be written with the aid of a 

frequency as  

tc=n/fc   (A-2) 
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where n is the work cycles at the DoD of interest, f is the 

frequency of cycles. However, since batteries are thermally 

activate the number of cycles to failure is also dependent 

on battery temperature T so that [3, 5] cycles to failure will 

be effected by temperature. We model this using an 

Arrhenius expression and now switch to failure cycles N 

(i.e., n cycles of work compared to N cycles to failure) as 

TK

o
BeNTN




)(   (A-3) 

Here  is the thermal activation energy for cycle life and KB 

is the well known Boltzmann’s constant. The damage 

failure voltage must also be thermally activated dependent 

on temperature and we model it similarly as 

TK
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o
BeVTV
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We make the substitution that 

TK

vq
TDoD

B


)(       (A-5) 

We see that vq+ is formally the activation free energy not 

to be confused with the free energy. 

 

Equation A-2, A-3, A-4 and A-5 allow us to write the 

ultimate work energy as 

DoD

oo

c

eiVN
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UEW
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Note we have at this point substituted failure values N, so 

W is the ultimate work energy. The model indicates the 

ultimate work energy capability goes as DoD and N which 

makes sense. That is, we anticipate as DoD increase, N will 

decrease and W will stay the same (see Eq. 32 to clarify).  

 

On a side note, for the purist, the thermodynamic free 

energy often denoted by symbol F (Eq. 3) is actually given 

by 

 

dF=-SdT+Vdq   (A-7) 

where S is the entropy, T is the temperature, V is the 

electromotive force (voltage), and q is the charge. If we 

hold the temperature constant this simplifies our free 

energy measurement task, where the work is bounded by 

the free energy as discussed in Eq. 3 such that for 

 VdqdFwdT  ,0                  (A-8) 
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